Landscape of Circular Ribonucleic Acids in Urological Cancers

Document Type : Editorial

Author

School of Medicine, Tehran University of Medical Sciences, Tehran, Iran

Abstract

The urological malignancies are among the most important neoplastic diseases imposing a significant burden on health care systems globally. The current therapeutic measures for these cancers have unsatisfactory results, and comprehensive knowledge of pathways involved in carcinogenesis and progression of these cancers is of utmost importance. Circular Ribonucleic Acids (circRNAs) are a class of non-coding RNAs characterized by their single-stranded covalently closed loops, exert their regulatory effects mainly by sponging the microRNAs (miRNAs) associated with the regulation of gene expression. In the past few years, several circRNAs have been identified to be implicated in the malignancies of the urinary system. A number of these circRNAs are involved in the common carcinogenic pathways, such as MAPK/ERK, TGF-β, and PI3K-Akt pathways. However, further studies are required to ascertain the exact mechanism of numerous circRNAs in urological cancers and determine their diagnostic, prognostic, and therapeutic roles in patients with these cancers.

Highlights

  • Circular RNAs (circRNAs) regulate numerous pathways related to carcinogenesis.
  • Recently, several circRNAs have been determined to implicate in urological cancers.
  • Further studies are required to ascertain the role of circRNAs in urological tumors.

Keywords

Main Subjects


Editorial: The urological malignancies are among the most important neoplastic disease imposing a significant burden on health care systems globally. As estimated in 2018, three main types of urological tumors, including prostate, bladder, and renal cancers, reached a total worldwide incidence of 2.2 million new cases contributing to the death of more than 730,000 patients (1). The current therapeutic measures for these cancers have unsatisfactory results, given their high recurrence rates, metastatic behavior, and progression to drug-resistant states (2, 3). Thus, comprehensive knowledge of pathways involved in carcinogenesis and progression of these cancers and the determination of new targets for the treatment of these neoplasms are of utmost importance.

Circular RNAs (circRNAs) are a class of non-coding RNAs characterized by their single-stranded covalently closed loops without 5’ and 3’ ends. As a result of their high stability and tissue-specific expression, circRNAs play pivotal roles in various biological functions and the regulation of numerous pathways from cellular proliferation to apoptosis or angiogenesis (3). CircRNAs exert their regulatory effects by several key mechanisms: 1. Sponging the microRNAs (miRNAs) associated with regulation of gene expression, 2. Providing a reservoir for miRNAs to elevate their availability, leading to increased regulation of target messenger RNAs (mRNAs), consequently their corresponding genes, and 3. Binding directly to the proteins and mediating their actions (3, 4). Therefore, alteration in the expression of different circRNAs may act as oncogenic or tumor suppressor factors depending on the circRNA-miRNA-mRNA interaction networks. Moreover, circRNAs may exit from the cells and be utilized as diagnostic, prognostic, or therapeutic biomarkers.

In the past few years, several circRNAs have been identified to be implicated in the malignancies of the urinary system. In fact, a recent review described over 58 circRNAs involved in the carcinogenesis of three major urological cancers, including prostate, bladder, and renal cancer (3). A number of these circRNAs interact with the common carcinogenic pathways, such as MAPK/ERK, TGF-β, and PI3K-Akt pathways (3, 5). In addition to the roles of circRNAs in the development and progression of urological cancers, several circRNAs have been ascertained as diagnostic and prognostic biomarkers. For instance, circEGLN3 reached an accuracy of 97% to distinguish between renal cancer and normal tissue (6). Given the abundant existence of circRNAs in body fluids, these circRNAs can be served as liquid biopsy factors for the cancers of the urinary system. Regarding prognostic endpoints, the dysregulated expression of numerous circRNAs has been demonstrated to associate with the survival of patients with urological tumors (3, 7). As the evidence emerges, different circRNAs are introduced in various aspects of urinary system tumors, expanding the knowledge concerning the tumorigenesis and management of these cancers.

 

Conclusions

CircRNAs exert crucial functions related to the development and progression of neoplastic diseases by mainly interacting with miRNAs. Recently, several circRNAs have been identified in urological cancers, among which some of them are involved in common carcinogenic pathways, such as MAPK/ERK, TGF-β, and PI3K-Akt pathways. Further studies are required to ascertain the exact mechanism of numerous circRNAs in urological cancers and determine their diagnostic, prognostic, and therapeutic roles in patients with these cancers.

Authors’ contributions

Not applicable.

 

Acknowledgments

None.

 

Conflict of interest

There was not any conflict of interest.

 

Funding

There was no funding.

 

Ethics statement

Not applicable.

 

Data availability

Not applicable.

 

Abbreviations

CIRCRNA    Circular RNA

MIRNA       Micro RNA

MRNA        Messenger RNA

 

References
1. Bray F, Ferlay J, Soerjomataram I, Siegel RL, Torre LA, Jemal A. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians. 2018;68(6):394-424.
2. Chamie K, Litwin MS, Bassett JC, Daskivich TJ, Lai J, Hanley JM, et al. Recurrence of high-risk bladder cancer: a population-based analysis. Cancer. 2013;119(17):3219-27.
3. Yang L, Zou X, Zou J, Zhang G. Functions of circular RNAs in bladder, prostate and renal cell cancer (Review). Molecular medicine reports. 2021;23(5).
4. Wu G, Sun Y, Xiang Z, Wang K, Liu B, Xiao G, et al. Preclinical study using circular RNA 17 and micro RNA 181c-5p to suppress the enzalutamide-resistant prostate cancer progression. Cell death & disease. 2019;10(2):37.
5. Su Y, Feng W, Shi J, Chen L, Huang J, Lin T. circRIP2 accelerates bladder cancer progression via miR-1305/Tgf-β2/smad3 pathway. Molecular cancer. 2020;19(1):23.
6. Franz A, Ralla B, Weickmann S, Jung M, Rochow H, Stephan C, et al. Circular RNAs in Clear Cell Renal Cell Carcinoma: Their Microarray-Based Identification, Analytical Validation, and Potential Use in a Clinico-Genomic Model to Improve Prognostic Accuracy. Cancers. 2019;11(10).
7. Cen J, Liang Y, Huang Y, Pan Y, Shu G, Zheng Z, et al. Circular RNA circSDHC serves as a sponge for miR-127-3p to promote the proliferation and metastasis of renal cell carcinoma via the CDKN3/E2F1 axis. Molecular cancer. 2021;20(1):19.