Translational Research

Home Page: <u>www.transresurology.com</u>

Correlation between Altmetric Attention Score and Citation in the Urological Cancers Literature

Mahin Ahmadi Pishkuhi¹, Seyed Saeed Tamehri Zadeh², Mehdi Khoshchehreh³, Abdolreza Mohammadi^{4*}

1Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran

2Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran

3Department of Pathology, University of California, Los Angeles, USA 4Ebnesina Hospital, Iran University of Medical Sciences, Tehran, Iran

HIGHLIGHTS

Original Article

• Altmetric can measure the impact of literature with higher velocity than traditional citation scores.

• The present study examined the online attention toward urology cancer field articles with the highest citation number utilizing Altmetric data.

• There is an association between citation and Altmetric attention score.

A R T I C L E I N F O

Receive Date: 10 November 2022 Accept Date: 07 February 2023 Avaliable online: 19 February 2023 DOI: 10.22034/TRU.2023.380726.1138

*Corresponding Author:

Abdolreza Mohammadi Email: Ab2rezamohammadi@yahoo.com Address: Ebnesina Hospital, Iran University of Medical Sciences, Tehran, Iran.

Introduction

ABSTRACT

Introduction

The association between the Altmetric Attention Score (AAS), a surrogate of public attention, and citation in urology cancer field articles was evaluated.

Methods

We searched in Scopus based on the existence of the following terms in the title, abstract, and keywords: prostate or bladder or kidney or renal or testis, AND tumor or cancer or malignancy, and the top 50 articles of 2015 with the highest citation counts were enrolled in our study. AAS was calculated using Altmetric explorer, and the citation number was extracted from Scopus.

Results

At last, 23 irrelevant articles were excluded, and 27 remained. The article with the highest citation was placed 11th in the AAS ranking, and the article with the highest AAS was the 12th highly cited article. AAS had a significant association with citation count; however, it did not associate with journals' impact factor, study type, study topic, articles access, type of tumor, and geographic distribution (P-value>0.05). Most articles were original, mainly with "molecular mechanism and genetics" topics, and originated from USA institutions. Moreover, many were published in open-access journals and dedicated to prostate cancer.

Conclusions

Articles with fabulous citation counts do not necessarily have a higher Altmetric score, which indicates that subjects with high popularity among people may not interest the scientific community.

Keywords: Prostate; Bladder; Kidney; Testis; Cancer; Altmetric

With tremendous advancements in Life expectancy, the incidence of cancer-related deaths along with cancer treatments attempts has risen notably (1, 2). Urological cancers, mainly prostate, bladder, kidney, and testis cancersareprevalentworldwide; however, their incidence and mortality vary among different countries (3, 4).

Among men, apart from skin cancers, prostate cancer is the most prevalent cancer, with an annual incidence of 240,000 new cases in the United States (2). Likely, bladder cancer imposes a significant burden on the healthcare system; as shown in 2012, 14,880 deaths were attributed to bladder cancer in the United States (2, 5). Up to now, quite an amount of efforts have been made to address risk factors

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International license (<u>https://creativecommons.org/licenses/by-nc/4.0/</u>). Noncommercial uses of the work are permitted, provided the original work is properly cited. Copyright © 2023 Urology Research Center (URC).

OF UROLOGICAL CANCERS, AND SEVERAL OF THEM, INCLUDING, BUT NOT LIMITED TO, METABOLIC, BEHAVIORAL, AND ENVIRONMENTAL RISK FACTORS, HAVE BEEN IDENTIFIED (2).

Although traditionally, the impact of the journal that published the article and number of citations were the main tools in order to measure the quality of the article, currently, due to progress and gaining popularity in new technology, new metrics have been introduced as means of evaluating the usage and the spread of scientific papers (6). Nowadays, with substantial improvements in new technologies such as wearable devices (7), big data (8), and cloud computing (9), desirable situations are provided for people to be aware, share, and analysis different aspects of cancer diseases. Moreover, medical staff can derive enormous benefits from evolving comprehensive information regarding, for instance, cancer pathogenesis and genetic features of cancer diseases (10).

ALTMETRIC, A SUPPLEMENT OF BIBLIOMETRIC, TRACES THE EXISTENCE OF A SCIENTIFIC PAPER ON SOCIAL PLATFORMS BY CALCULATING THE MENTIONS THAT A PAPER OBTAINED THROUGH DIFFERENT MEDIA, INCLUDING TWITTER, FACEBOOK, BLOGS, POLICY SOURCES, NEWS OUTLETS, WIKIPEDIA, REDDIT, ONLINE VIDEOS, PATENTS, AND GOOGLE (11, 12). THE ALTMETRIC SCORE CALCULATES WITHIN AN AUTOMATED ALGORITHM AND INDICATES A WEIGHTED SUM OF ATTENTION FOR A SPECIFIC RESEARCH OUTPUT (11). TO THE BEST OF OUR KNOWLEDGE, THERE IS NO AVAILABLE STUDY REGARDING THE COMPASSION BETWEEN ALTMENTIC SCORE AND CITATIONS IN THE UROLOGY CANCER FIELD. WE FOUND OUT THAT THERE IS A KNOWLEDGE GAP CONCERNING PUBLIC ATTENTION TO UROLOGICAL CANCER ARTICLES. HENCE, HEREIN, WE DESIGNED A STUDY TO EVALUATE WHETHER THERE IS AN ASSOCIATION BETWEEN CITATION AND ALTMETRIC ATTENTION SCORE (AAS) IN The top 50 highly cited articles in cancer urology cancer FIELD PUBLISHED IN 2015.

Methods

We aimed to define top-ranked articles in urology about the four most prevalent tumors, including prostate,

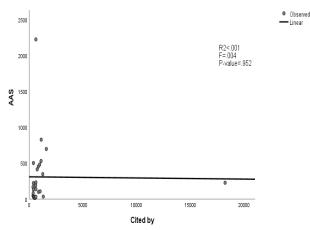
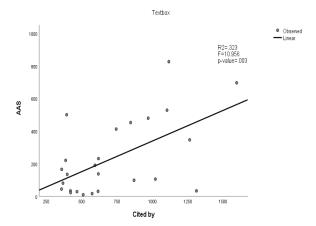


Figure 1a. Relationship between citations and AAS for all papers


Translational Research in Urology, 5(1): 16 -27 Winter 2023

bladder, renal/kidney, and testis. We assumed that each paper's five-year period was required to evaluate its penetration indexes into academic and public communities. Therefore, articles published in Scopus between January 2015 and December 2015 were included. Our search strategy was based on the following terms in the title or abstract: prostate, bladder, or kidney or renal or testis AND tumor or cancer or malignancy.

The search results were sorted according to citation count, and a full list of 50 top-ranked articles was obtained from Scopus. Then, the list was purified based on relevancy to the field of urology by two authors (M. AP and SS. T) independently. The study titles, abstracts, and full texts were checked and 23 irrelevant articles were excluded. Data extraction was performed by two authors (M. AP and SS. T), and the first author, journal's name, article type, country, major topic, tumor type, AAS of paper, and citation in August 2020 were extracted. The two researchers identified article type (original, reviews, and note), major topic (epidemiology, treatment, molecular mechanism and genetics, diagnosis and early detection, etiology and risk factors), tumor type (prostate, bladder, kidney, testis), and article access (non-open access vs. open access). The AAS was obtained from the Altmetric Bookmarklet tool downloaded from the website Altmetric.com. Information related to online attention to the publications (e.g., Twitter, Facebook, Mendeley, Etc.) was reported from this tool. The journals' impact factors (IF) and quartiles (Q) were collected from SJR (http://scimagojr.com). In addition, citation numbers were extracted from Scopus (HTTP://www.Scopus. com).

Statistical analysis

We used the median and the ranges of values (minimummaximum) to describe data. Study data that were not normally distributed and comparisons were made using

Figure 1b. Relationship between citations and AAS for 26 papers (excluding the 2 outliers: 1 & 12)

Title	First	Journal	Article	Open	Country	Subject	Tumor Type	Citation
	Author		Туре	Access				Number
Global cancer statistics,	Torre	CA Cancer	Original	No	USA	Epidemiology	Prostate, bladder,	18248
2012	L.A.	Journal for	article				kidney, testis	
		Clinicians						
The Global Burden of	Fitzmau-	JAMA	Original	Yes	USA	Epidemiology	Prostate, bladder,	1595
Cancer 2013	rice C.	Oncology	article				kidney, testis	
EAU guidelines on renal	Ljung-	European	Original	No	Netherland	Treatment	Kidney	1311
cell carcinoma: 2014 update	berg B.	Urology	article					
Integrative clinical genom-	Robinson	Cell	Original	Yes	USA	Molecular	Prostate	1263
ics of advanced prostate	D.		article			mechanism and		
cancer						genetics		
Global surveillance of	Allemani	The Lancet	Original	No	UK	Epidemiology	Prostate	1116
cancer survival 1995-2009:	C.		article					
Analysis of individual data								
for 25 676 887 patients								
from 279 population-based								
registries in 67 countries								
(CONCORD-2)								
Chemohormonal therapy in	Sweeney	New	Original	Yes	USA	Treatment	Prostate	1103
metastatic hormone-sensi-	C.J.	England	article					
tive prostate cancer		Journal of						
		Medicine						
The Molecular Taxonomy	Abes-	Cell	Original	No	USA	Epidemiology	Prostate	1021
of Primary Prostate Cancer	house A.	••••	article			8)		
DNA-repair defects and	Mateo J.	New	Original	Vec	UK	Treatment	Prostate	970
olaparib in metastatic pros-	Wateo	England	article	105	UK	Treatment	Tiostate	970
		•	atticle					
tate cancer		Journal of						
Olaparib monotherapy	Kaufman	Medicine Journal of	Original	No	LISA	Treatment	Prostate, bladder	870
	Rauman B.		article	NO	USA	ricatinent	1 Iostate, Diaddel	070
in patients with advanced	Б.	Clinical	article					
cancer and a germline		Oncology						
BRCA1/2 mutation Comparison of MR/ultra-	Siddiqui	JAMA -	Original	Vac	USA	Diagnosis and	Prostate	846
-	-		-	105	USA	-	1 IUState	040
sound fusion-guided biopsy	M.M.	Journal of	article			early detection		
with ultrasound-guided		the American						
biopsy for the diagnosis of		Medical						
prostate cancer		Association						
PD-L1 expression as a pre-	Patel S.P.	Molecular	Review	Yes	USA	Molecular	Prostate, bladder,	744
dictive biomarker in cancer		Cancer Ther-				mechanism and	kidney	
immunotherapy		apeutics				genetics		

Table 1. list of 27 most cited articles in Scopus, 2015 in relation to four urological cancers including prostate, kidney, bladder, and testis

Carcinogenicity of	Bouvard	The Lancet	Note	No	France	Etiology and	Prostate	619
consumption of red and	V.	Oncology				risk factor		
processed meat								
The evolutionary history of	Gundem	Nature	Original	No	Finland	Molecular	Prostate	619
lethal metastatic prostate	G.		article			mechanism and		
cancer						genetics		
Abiraterone acetate plus	Ryan C.J.	The Lancet	Original	No	USA	Treatment	Prostate	618
prednisone versus placebo		Oncology	article					
plus prednisone in chemo-								
therapy-naive men with								
metastatic castration-re-								
sistant prostate cancer								
(COU-AA-302): Final								
overall survival analysis of								
a randomised, double-blind,								
placebo-controlled phase								
3 study		x 1.0	0 : : 1			D ' · · 1		(1)(
Evaluation of hybrid	Eiber M.	Journal of	Original	Yes	Germany	Diagnosis and	Prostate	616
68Ga-PSMA ligand PET/		Nuclear	article			early detection		
CT in 248 patients with bio-		Medicine						
chemical recurrence after								
radical prostatectomy								
Long-term follow-up of a	KLOTZ	Journal of	Original	No	Canada	Epidemiology	Prostate	594
large active surveillance	L.	Clinical	article					
cohort of patients with		Oncology						
prostate cancer								
The diagnostic value of	Af-	European	Original	Yes	Germany	Diagnosis and	Prostate	574
PET/CT imaging with the	shar-Oro-	Journal of	article			early detection		
68Ga-labelled PSMA ligand	mieh A.	Nuclear						
HBED-CC in the diagnosis		Medicine						
of recurrent prostate cancer		and Molecu-						
		lar Imaging						
Annual report on status of	Chen W.	Chinese	Original	No	China	Epidemiology	Prostate, bladder,	511
cancer in China, 2011		Journal	article				kidney, testis	
		of Cancer						
		Research						
Molecular biology of blad-	Knowles	Nature	Review	No	UK	Molecular	Bladder	467
der cancer: New insights	M.A.	Reviews				mechanism and		
into pathogenesis and		Cancer				genetics		
clinical diversity						0		
Emerging mechanisms of	Watson	Nature	Review	No	USA	Molecular	Prostate	422
resistance to androgen re-	P.A.	Reviews				mechanism and		
ceptor inhibitors in prostate		Cancer				genetics		
		Cancel				Sellettes		
cancer								

Translational Research in Urology, 5(1): 16 -27 Winter 2023

Can Clinically Significant	Fütterer	European	Review	No	France	Diagnosis and	Prostate	421
Prostate Cancer Be Detect-	J.J.	Urology				early detection		
ed with Multiparametric								
Magnetic Resonance Imag-								
ing? A Systematic Review of								
the Literature								
Free Radicals: Properties,	Phanien-	Indian	Review	No	India	Molecular	Prostate, bladder	398
Sources, Targets, and Their	dra A.	Journal of				mechanism and		
Implication in Various		Clinical				genetics		
Diseases		Biochemistry						
Cancer statistics in Korea:	Jung	Cancer	Original	Yes	Korea	Epidemiology	Prostate, bladder,	394
Incidence, mortality,	KW.	Research and	article				kidney, testis	
survival, and prevalence		Treatment						
in 2012								
Lenvatinib, everolimus, and	Motzer	The Lancet	Original	No	UK	Treatment	Kidney	387
the combination in patients	R.J.	Oncology	article					
with metastatic renal cell								
carcinoma: A randomised,								
phase 2, open-label, multi-								
centre trial								
Androgen receptor splice	An-	JAMA	Original	Yes	USA	Molecular	Prostate	368
variant 7 and efficacy of	tonarakis	Oncology	article			mechanism and		
taxane chemotherapy in	E.S.					genetics		
patients with metastatic								
castration-resistant prostate								
cancer								
Trends in management for	Cooper-	JAMA -	Original	Yes	USA	Treatment	Prostate	359
patients with localized pros-	berg	Journal of	article					
tate cancer, 1990-2013	M.R.	the American						
		Medical						
		Association						
MTOR regulates the	Laberge	Nature Cell	Original	No	USA	Molecular	Prostate	358
pro-tumorigenic senes-	RM.	Biology	article			mechanism and		
cence-associated secretory						genetics		
phenotype by promoting								
IL1A translation								

a Kruskal-Wallis test to compare Altmetric score among different categories. The Spearman rank correlation coefficient was used to describe the correlation between Altmetric attention scores and citation count or the number of mentions in Twitter. As well, the relationship between AAS and the journals' impact factors were assessed. Data analysis was performed in SPSS v.21.

Results

Totally, 27 articles were included for analysis in the final list and were sorted in Table 1 according to their citation, and the articles' characteristics were reported. Among all, 77.7% were original articles, 18.5% were reviews, and one was a note. The source country of most of these top-ranked articles was North America (51.8%) and Europe (397%), and only three articles were from other

ID*	AAS/C**	News outlets	Blogs	Policy sources	Tweeters	Patents	Weibo user	Facebok pages	Wikipedia pages	Gogle+ users	Video uploader	Readers on Medely	Readers on CteU- Like	Research highlight platform	Dimensions	Peer review site	Red- ditors
12	2223/619	170	48	6	720	0	0	52	1	10	18	1408	0	0	634	0	2
S	827/1116	46	~	5	562	0	e	25	1	9	0	1186	-	0	0	0	0
7	697/1595	17	5	-	831	0	0	29	0	6	1	1420	0	0	1555	0	0
9	529/1103	43	~	-	213	-	0	10	0	_	0	740	0	-	1148	0	0
23	501/394	65	0	0	0	0	0	0	0	0	0	94	0	0	489	0	0
×	480/970	39	7	0	218	4	0	12	0	3	1	827	-	-	0	0	2
10	453/846	37	5	0	216	0	0	14	0	4	1	540	-	-	935	0	0
Ξ	413/744	50	0	0	13	6	0	0	0	-	0	742	0	0	846	0	0
4	347/1263	29	7	0	105	6	0	4	0	5	0	1156	6	-	1318	-	0
13	232/619	=	~	0	164	-	0	6	0	5	0	1008	13	-	689	0	0
-	227/18248	19	4	5	36	13	_	3	2	5	1	8540	3	0	0	0	0
24	221/387	25	5	-	13	-	0	_	0	0	0	250	0	0	443	0	0
16	191/594	18	7	0	60	2	0	1	0	0	0	412	0	0	667	0	0
26	166/359	12	e	0	83	0	0	10	0	0	0	143	0	0	387	0	0
14	138/618	16	-	0	26	0	0	4	0	0	0	427	0	0	680	0	0
22	135/398	17	0	0	3	0	0	4	1	0	0	1413	0	0	461	0	0
7	106/1021	9	-	0	81	1	0	-	1	0	0	1098	e	0	1178	0	0
6	99/870	12	0	-	18	0	5	0	0	0	0	629	0	0	899	0	0
25	81/368	7	-	0	38	e	0	ю	0	_	0	193	0	0	388	0	0
27	45/358	б	0	0	20	e	0	1	0	1	0	434	0	1	409	0	0
3	34/1311	1	1	0	26	1	0	2	0	0	0	561	0	0	1562	0	0
21	34/421	1	0	0	36	0	0	6	0	1	0	369	0	0	471	0	0
15	31/616	2	1	1	4	1	0	1	0	0	0	299	1	0	641	0	0
19	29/467		0	0	26	0	0	2	0	0	0	534	0	0	478	0	0
20	23/422	0	0	1	22	5	0	4	0	0	0	478	0	0	427	0	0
17	17/574	0	0	2	c,	П	0	0	0	0	0	302	0	0	630	0	0
18	10/511	-	0	0	_	0	0	0	0	0	0	88	0	0	469	0	0

*ID: Citation rank; **AAS/C: Altmetric Attention Score (ASS)/ Citation

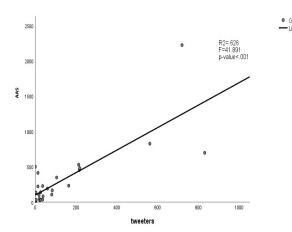


Figure 2. Relationship between AAS and mentions on Tweeters in all papers

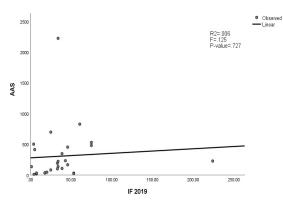


Figure 3a. Relationship between journals' impact factor (in 2015) and AAS

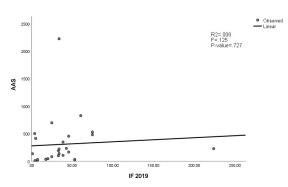


Figure 3b. Relationship between journals' impact factor (in 2019) and AAS $% \mathcal{A}$

geographic areas. Ten top most-cited manuscripts were original articles, and those focused on epidemiological issues or treatment advances had higher citation values. The mean value of citation scores for articles published originally from the USA, Europe, and other countries were 2029.21 ± 4682.79 , 710 ± 313.48 , and 434.33 ± 66.42 , respectively (data not shown).

Table 2 shows the AAS for the included articles.

Translational Research in Urology, 5(1): 16-27 Winter 2023

Table 3. Comparison of sciencemetric and altmetric indexes according to journals' accessibility status

		Open Access	
	No	Yes	P-value
	Median	Median	
	(min-max)	(min-max)	
Cited by	606 (358-18248)	744 (359-1595)	0.730
Altmetric Attention Score	120.5 (10-2223)	413 (17-697)	0.139
News	11.5 (0-170)	29 (0-65)	0.145
outlets			
Blogs	1 (0-48)	2 (0-8)	0.492
Policy sources	0 (0-6)	0 (0-2)	0.774
Tweeters	26 (1-720)	83 (0-831)	0.521
Patents	0.5 (0-13)	1 (0-11)	0.287
Weibo user	0 (0-3)	0 (0-0)	0.136
Facebook pages	2.5 (0-52)	4 (0-29)	0.654
Wikipedia pages	0 (0-2)	0 (0-0)	0.045
Google+	0 (0-10)	1 (0-9)	0.262
users Video uploader	0 (0-18)	0 (0-1)	0.401
Readers on Mendely	547.5 (88-8540)	540 (94-1420)	0.430
Readers on CiteULike	0 (0-13)	0 (0-6)	0.690
Research highlight platform	0 (0-1)	0 (0-1)	0.150
Dimen- sions	474.5 (0-1562)	641 (0-1555)	0.430
Peer re- view site	0 (0-0)	0 (0-1)	0.228
Redditors	0 (2-11)	0 (0-2)	0.822

The highest AAS was for a note that was published in "Lancet Oncology" with the topic of "etiology and risk factors of prostate cancer". The second and third were two epidemiological articles about "global surveillance of cancer survival" and "The global burden of cancer" that were published in "Lancet" and "JAMA Oncology", respectively. Table 2 shows the traditional science metrics in comparison with the online attention score. However, Figure 1a shows there was no correlation between citation and AAS (r=0.03, P-value=0.952). Figure 1b shows that after eliminating two outlier articles from the study data, a statistically significant but weak correlation was observed between these indexes (r=0.56, P-value=0.003). Twitter had a significant role in online public attention, and there

Journals	N*	Journal Q in 2015	Journal IF in 2015	Journal IF
				in 2019
Cell	2	Q1	28.710	38.637
CA Cancer Journal for Clinicians	1	Q1	100.139	223.679
JAMA Oncology	2	Not indexed in SCImago	0	24.799
European Urology	2	Q1	14.976	17.581
The Lancet	1	Q1	31.981	60.392
New England Journal of Medicine	2	Q1	35.430	74.699
Journal of Clinical Oncology	2	Q1	17.467	32.956
Nature	1	Q1	26.445	42.778
Journal of Nuclear Medicine	1	Q1	6.203	7.354
European Journal of Nuclear Medicine and Molecular Imaging	1	Q1	1.761	7.081
The Lancet Oncology	3	Q1	30.483	33.752
Cancer Research and Treatment	1	Q1	4.959	3.761
JAMA - Journal of the American Medical Association	2	Q1	13.924	45.540
Nature Cell Biology	1	Q1	16.734	20.042
Nature Reviews Cancer	2	Q1	34.838	53.030
Chinese Journal of Cancer Research	1	Q3	2.201	4.135
Indian Journal of Clinical Biochemistry	1	Q3	1.050	1.140
Molecular Cancer Therapeutics	1	Q1	5.579	5.040

 Table 4. Comparison of article sources according to type of journals

*Number of study articles published in each journal

was a significant correlation between AAS and twitter (r =0.79, P-value<0.001; Figure 2).

Table 3 shows the median value of citation, AAS, mentioned in Twitter, and almost all other evaluated indexes were higher in open access journals. However, the estimated values did not show a statistically significant difference (P-values>0.05). All article sources were Q1 journals, except for JAMA Oncology that was not in SJR Q ranking in 2015. In addition, the two Chinese and Indian journals were Q3. The journal's impact factor in publication date ranged from 0 to 100.1, shifting towards 1.1 to 223.6 in 2019 (Table 4). The correlation between AAS and journals' impact factor in 2015 vs. 2019 is demonstrated in figures 3a and 3b. There was only a very weak correlation between these factors. However, these finding were not statistically significant (respectively; r=.11, P-value=.557; r=.08, P-value=.727)

Finally, we compared the median value of AAS in different categories. AAS in open access journals (Median=413) was relatively higher than non-open access journals (Median=120.5). AAS in review articles was significantly lower than other types of articles. The median value of AAS in North American countries was higher than European and Asian countries. The AAS for Asian countries was higher than European ones. However, the reported ranges were too broad and in one article was only ten. The ASS reported for each article in Table 2 was relatively higher in American publications. Considering both median and range of values in Table 5, epidemiological articles had the highest online attention score.

Discussion

To our knowledge, no study so far has been conducted to explore the association between AAS and citation score in the urological cancer field. Expectedly, in the current study, following removing two outlier articles, a weak positive association between AAS and Scopus citation was found. According to the findings of Eabhann et al.,'s study that was performed on 100 urological articles with the highest Altmetric scores published in 2014 and 2015, a significant correlation was found between Altmetric score and number of citations per article and the impact factor of the journal (13). Likely, this positive correlation was replicated by Calopedose et al., among 22 urological articles (14). Currently, journals' impact factor neither in 2015 nor in 2019 had a significant association with AAS. Other studies in oral cancer (15), nursing (16), radiology (17), and urology (6) field reached the same result in this regard. This point highlights that the AAS of the article does not merely depend on the journal's impact factor, and other factors may have a role in gaining public attention. Although the study of Torre et al., had the highest citation counts, it ranked 11th in terms of AAS in the present study. This original article that was published in "CA: A Cancer

Factor		Number of outputs	Median of Altmetric Attention Score (min-max)	P-value
Article access	Non-open access	16	120.5(10-2223)	0.139
	Open access	11	413(17-697)	-
Study type	Original article	21	191(10-827)	0.096
	review	5	34(23-413)	-
	note	1	2223(2223-2223)	-
Торіс	Epidemiology	7	227(10-827)	0.180
	Treatment	7	166(34-529)	-
	Molecular mechanism and genetics	8	108(23-413)	-
	Diagnosis and early detection	4	32.5(17-453)	-
	Etiology and risk factor	1	2223(2223-2223)	-
Tumor type	Prostate	17	166(17-2223)	0.683
	Bladder	1	29(29-29)	-
	Kidney	2	127.5(34-221)	-
	prostate, bladder	2	117(99-135)	-
	prostate, bladder, kidney	1	413(413-413)	-
	prostate, bladder, kidney, testis	4	364(10-697)	-
Geographic distribution	North America	14	178.5(23-697)	0.862
	Europe	10	127.5(17-2223)	
	Asia	3	135(10-501)	-

Table 5. Factors associated with Altmetric Attention Score in 28 articles

Journal for Clinicians" journal with the impact factor of 223.67, investigated on the global several malignancies including prostate, bladder, kidney, and testis, scale and profiles as well as preventive measures. At last, they concluded that the incidence of malignancies because of the increase in life expectancy and worldwide population and carcinogenic behaviors, including tobacco usage, is sustainably rising (18). The study had the highest AAS, whereas was discussed about the relationship between red meat consumption and different malignancies (19). The article with the highest AAS was "Carcinogenicity of consumption of red and processed meat". This article made brief reports on the potential of red and processed meat as risk factors for malignancies, especially prostate cancer. Based on the article's topic, it is reasonable that the article had considerable popularity among people.

There were no significant associations between AAS and study type, topic, type of tumor, and geographic distribution in the present study. In the current study, most enrolled articles (approximately 78%) were original articles, and the review articles were placed as the second rank with the rate of 36%, which is similar to Mainwaring et al.'s study. In their study, 79% of bladder cancer articles with the highest citation were original, and 14% were reviewed, of which 8% were the review manuscript, and 6% were the meta-analyses manuscript (20). AAS and citation counts were higher in open access journals than non-open access journals, but these differences were insignificant. Likewise, Hassona et al., claimed no significant difference between open and non-open access journals in terms of AAS (15). Maggio et al., demonstrated a positive association between online attention and public accessibility of the articles with health profession education content (21). Virtually all of the articles were published in Q1 journals. Highly discussed topics in the included study were molecular mechanism and genetics (about 30%). Among four types of tumors, prostate cancer was of interest to the majority of studies. We thought this was not surprising because of the higher burden and prevalence of prostate cancer than other types.

Despite the many benefits of Altmetric, it encompasses a variety of problems that should be paid attention to; First, Altmetric measures the quantitative influence of an article in social media and would not measure the quality of research outcomes or influences. The method for calculating the Altmetric score is designed based on the beliefs of the developer of this method for each online. Bornmann et al. demonstrated that Mendeley and Twitter mentions have a superior association with citations; thus, they may have different contributions for the Altmetric score. Likely, in the present study, the impact of Twitter on social attention was considerable. Second, Altmetric scores can be manipulated conveniently by using fake Twitter accounts or robots. Therefore, may Altmetric scores not be fully trustable (22-25). However, in the present study, Altmetric scores were calculated using Altmetric explorer

that is less prone to manipulation among different means for measuring Altmetric. Third, due to discrepancies in penetration and usage of the Internet worldwide, Altmetric essentially does not indicate online attention of the whole countries (26). Finally, there is likely a bias in outcomes of Altmetric, which stems from higher rates of social media usage by younger individuals or authors than older ones. Nevertheless, Zhou et al., showed that authors' social media size is conversely associated with the authors' popularity (27).

As substantiate progress in the use of social media in the urology field is occurring, several top journals of urology, mainly BJU international and European Urology, have selected editors of social media in order to expand their online existence (14). These activities confer apparent benefits, including intensifying the influence of social media in academia and leading young researchers and urologists to be aware of social media, which play a crucial role in many training programs (28-30).

We acknowledge that our study had some strengths:

1. As far as we know, no study has evaluated the association between Altmetric scores and citation counts in highly cited urology articles with the urology cancer field of one specific year.

2. In the present study, we examined articles that were published in 2015. It is not plausible to compare articles of different years because articles published earlier have a higher chance of gaining more citations and Altmetric scores than published later (13).

3. We did not limit ourselves to journals that publish only urology subjects, and thus, we did not miss articles in the urology cancer field that were published in non-urology journals.

4. We performed the study on the articles published in 2015.

It is important to note that Altmetric can measure the impact of literature with higher velocity than traditional citation scores (6). Since approximately five years passed from the included articles' publication date, the time for articles to gain enough citations was enough; therefore, this led to not overestimate the impact of Altmetric.

Conclusions

For the first time, the present study examined the online attention toward urology cancer field articles with the highest citation number utilizing Altmetric data. The article with the highest AAS was not highly cited, and the article with the highest citation number had not the highest AAS. Moreover, we demonstrated that while there is a weak positive association between citation number and AAS, no significant association was observed between AAS and journals' impact factor, study type, study topic, articles access, type of tumor, and geographic distribution. We think the article impact will be assessed by a combination of altimetric and citation numbers in

Translational Research in Urology, 5(1): 16 -27 Winter 2023

the future.

Authors' contributions

All authors contributed equally.

Acknowledgments

Special thanks to the Urology Research Center, Tehran University of Medical Sciences, Tehran, Iran to provide data and patients.

Conflict of interest

All authors declare that there is no potential competing or conflict of interest.

Funding

There was no funding.

Ethics statement

No ethical statement.

Data availability

Data will be provided on request.

Abbreviations

- AAS Altmetric attention score
- IF Impact factors
- Q Quartiles

References

- Fitzmaurice C, Dicker D, Pain A, Hamavid H, Moradi-Lakeh M, MacIntyre MF, et al. The global burden of cancer 2013. JAMA oncology. 2015;1(4):505-27.
- Siegel RL, Miller KD, Jemal A. CA: a cancer journal for clinicians. Cancer stat. 2016;66:7-30.
- Dy GW, Gore JL, Forouzanfar MH, Naghavi M, Fitzmaurice C. Global burden of urologic cancers, 1990–2013. European urology. 2017;71(3):437-46.
- Aghamir SMK, Nasir Shirazi M, Khatami F. A Systematic Review of Circulating Tumor Cells in Renal Cell Carcinoma. Translational Research in Urology. 2021;3(1):10-8.
- Jemal A, Siegel R, Ward E, Hao Y, Xu J, Thun MJ. Cancer statistics, 2009. CA: a cancer journal for clinicians. 2009;59(4):225-49.
- Nocera AP, Boyd CJ, Boudreau H, Hakim O, Rais-Bahrami S. Examining the correlation between altmetric score and citations in the urology literature. Urology. 2019;134:45-50.
- Scheffler M, Hirt E. Wearable devices for telemedicine applications. Journal of telemedicine and telecare. 2005;11(1_suppl):11-4.
- 8. Lynch C. How do your data grow? Nature. 2008;455(7209):28-9.
- Armbrust M, Fox A, Griffith R, Joseph AD, Katz R, Konwinski A, et al. A view of cloud computing. Communications of the ACM. 2010;53(4):50-8.
- Restifo NP. A "big data" view of the tumor "immunome". Immunity. 2013;39(4):631-2.
- 11. Elmore SA. The Altmetric attention score: what does it mean and why should I care? : SAGE Publications Sage CA: Los Angeles, CA; 2018. p. 252-5.
- Priem J, Taraborelli D, Groth P, Neylon C. Altmetrics: a manifesto. Altmetrics. Retrieved online from, http://altmetrics org/manifesto. 2010.
- O'Connor EM, Nason GJ, O'Kelly F, Manecksha RP, Loeb S. Newsworthiness vs scientific impact: are the most highly cited urology papers the most widely disseminated in the media? BJU international. 2017;120(3):441-54.
- Calopedos RJ, Garcia C, Rashid P, Murphy DG, Lawrentschuk N, Woo HH. Citation indices for social media articles in urology. BJU international. 2017;119:47-52.
- Hassona Y, Qutachi T, Dardas L, Alrashdan MS, Sawair F. The online attention to oral cancer research: An Altmetric analysis. Oral Diseases. 2019;25(6):1502-10.
- Dardas LA, Woodward A, Scott J, Xu H, Sawair FA. Measuring the social impact of nursing research: An insight into altmetrics. Journal of advanced nursing. 2019;75(7):1394-405.
- Rosenkrantz AB, Ayoola A, Singh K, Duszak Jr R. Alternative metrics ("altmetrics") for assessing article impact in popular general radiology journals. Academic radiology. 2017;24(7):891-7.
- Torre LA, Bray F, Siegel RL, Ferlay J, Lortet □ Tieulent J, Jemal A. Global cancer statistics, 2012. CA: a cancer journal for clinicians. 2015;65(2):87-108.
- Bouvard V, Loomis D, Guyton KZ, Grosse Y, El Ghissassi F, Benbrahim-Tallaa L, et al. Carcinogenicity of consumption of red and processed meat. The Lancet Oncology. 2015;16(16):1599-600.
- Mainwaring A, Bullock N, Ellul T, Hughes O, Featherstone J. The top 100 most cited manuscripts in bladder cancer: a bibliometric analysis. International Journal of Surgery. 2020;75:130-8.
- 21. Maggio LA, Leroux TC, Meyer HS, Artino Jr AR. # MedEd: exploring the relationship between altmetrics and traditional measures of dissemination in health professions education. Perspectives on medical education. 2018;7(4):239-47.
- Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet C, Al-Ghalith GA, et al. QIIME 2: Reproducible, interactive, scalable, and extensible microbiome data science. PeerJ Preprints; 2018. Report No.: 2167-9843.
- Liu J, Adie E. Five challenges in altmetrics: A toolmaker's perspective. Bulletin of the American Society for Information Science and Technology. 2013;39(4):31-4.
- Haustein S, Larivière V, Thelwall M, Amyot D, Peters I. Tweets vs. Mendeley readers: How do these two social media metrics differ? IT-Information technology. 2014;56(5):207-15.

Translational Research in Urology, 5(1): 16-27 Winter 2023

- Saadati M, Tamehri S, Pour Kamali M, Taheri D. Phosphatase and Tensin Gene Associated with Features of Aggressive Prostate Cancer. Translational Research in Urology. 2021;3(1):32-7.
- 26. Coyne M, Regan J. Measuring the social impact of contemporary dysphagia research: an altmetric analysis. Speech, Language and Hearing. 2021;25:1-13.
- Zhou JZ, Lemelman BT, Done N, Henderson ML, Macmillan A, Song DH, et al. Social media and the dissemination of research: Insights from the most widely circulated articles in plastic surgery. Plastic and reconstructive surgery. 2018;142(2):555-61.
- Manning TG, Christidis D, Zotov P, Lawrentschuk N. " Collaboration Through Communication": The Young Urology Researchers Organisation (YURO). BJU international. 2016;118:6-7.
- Rashid P, Gianduzzo TR. Urology technical and non□technical skills development: the emerging role of simulation. BJU international. 2016;117:9-16.
- Azodian Ghajar H, Koohi Ortakand R. The Promising Role of MicroRNAs, Long Non-Coding RNAs and Circular RNAs in Urological Malignancies. Translational Research in Urology. 2022;4(1):9-23.

Author (s) biosketches

Ahmadi Pishkuhi M, PhD, Pars Advanced and Minimally Invasive Medical Manners Research Center, Pars Hospital, Iran University of Medical Sciences, Tehran, Iran.

Email: mahin.ahmadipishkuhi@gmail.com

Tamehri Zadeh SS, MD, Prevention of Metabolic Disorders Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, Tehran, Iran .

Email: tamehrysaeed@gmail.com

Khoshchehreh M, MD, Department of Pathology, University of California, Los Angeles, USA.

Email: mkhoshchehreh@mednet.ucla.edu

Mohammadi A, MD, Ebnesina Hospital, Iran University of Medical Sciences, Tehran, Iran.

Email: Ab2rezamohammadi@yahoo.com

How to cite this article

Ahmadi Pishkuhi M, Tamehri Zadeh SS, Khoshchehreh M, Mohammadi A. Correlation between Altmetric Attention Score and Citation in the Urological Cancers Literature. Transl. res. urol. , 2023 Feb;5(1):16-27. DOI:<u>10.22034/TRU.2023.380726.1138</u> URL:<u>https://www.transresurology.com/article_166500.html</u>

